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Growth instability and pricking-fracture mechanism in smectic- 4 focal-conic nucleation
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We show that smectic- 4 plates growing from the top of isotropic droplets are subject to an interfacial
growth instability. This instability occurs before the static textural instability already known which pro-
duces focal conics in order to relax the smectic- 4 —isotropic surface energy. We study the growth insta-
bility and its relation with the tunneling through the barrier of the first-order static instability. We find
that the focal conics nucleate on the nonlinearities of the growth instability through a fracture mecha-

nism.

PACS number(s): 61.30.Jf, 47.35.+1i

I. INTRODUCTION

Smectic- 4 liquid crystals [1] are made of parallel rod-
like molecules piled inside monomolecular liquid layers
to which the molecules are oriented normally. The smec-
tic layers can be easily curved by external forces, but they
essentially remain equidistant. This causes the creation
of pairs of linear defects, an ellipse and the conjugated
confocal hyperbola, which are the common curvature
centers of the smectic layers. These defects, called focal
conics [2], are the characteristic macroscopic defects of
smectics.

It has recently been demonstrated [3] that smectic- 4
plates growing from the top of isotropic droplets are in-
trinsically unstable. Above a thickness threshold, they
are subject to a textural instability producing focal con-
ics. According to the model of Ref. [3], these focal conics
are stabilized by the contact with the isotropic phase,
where they relax the surface-energy anisotropy. The
same mechanism also explains the presence of focal con-
ics inside the smectic-4 germs, the so-called Grandjean
batonnets [2] nucleating inside the isotropic bulk [4]. The
smectic- A plates’ instability was described as a potential
instability; however, a dependence of the instability
threshold with respect to the smectic growth velocity was
reported [3].

In this paper, we study the growth of the above-
described smectic- A plates, in order to elucidate which
part of the growth dynamics plays in the nucleation
mechanism of their stable focal conics. In Sec. IT we de-
scribe our experimental setup. In Sec. III we report the
observation of a growth instability of the smectic-
A-isotropic interface, revealed by a birefringence modu-
lation which rapidly builds nonlinearities. We describe
how the focal conics nucleate on these nonlinearities. In
Sec. IV we discuss our observations and show that the
growth instability probably obeys a Mullins-Sekerka
mechanism by diffusion of impurities. Finally, from the
correlation of our observations, we propose that the nu-
cleation of the focal conics occurs through a fracture
mechanism exited by the nonlinearities of the growth in-
stability.

II. EXPERIMENT

Our experimental setup, similar to the one of Ref. [3],
may be described as follows. A liquid-crystal droplet, of
typical radius R,, ~ 1000 um and height H,, ~ 100 um, is
placed on an untreated glass holder. The material used is
10CB (4-n-decyl-4’-cyanobiphenyl), which presents a
smectic- A —isotropic transition at 7, =50.5°C. The glass
holder is then laid on a heating plate regulated at
T ~50°C within =2 mK. To prevent air convection, we
place a covering glass plate ~100 pm above the top of
the droplet, using 200-um Mylar spacers. The oven cover
is placed well above the plates to produce a vertical tem-
perature gradient G ~1 mK/um on the droplet (the top
of the drop is colder). Observation is made with a polar-
izing microscope, under crossed polars. We place the ob-
servation point halfway between the center and the bor-
ders of the droplet, at 45° from the polarizers’ cross to get
the maximum birefringence signal. A video camera and a
video recorder are attached to the microscope. We can
also add a photomultiplier to measure the local smectic-
A plate birefringence (averaged in a ~10X 10 um? win-
dow). Alternatively, we use a Michelson interferential
lens (Ealing, 25-0084) to measure the drop profile from
equal-altitude fringes. In this case the drop is illuminated
by reﬂoection using a mercury lamp with a green filter
(5460 A).

III. RESULTS

We start the experiment by placing the drop in the iso-
tropic phase; we then decrease the temperature. A smec-
tic plate in contact with the isotropic phase nucleates
from the top of the droplet. Observed between crossed
polars, this plate shows a black cross, the usual conoscop-
ic pattern of a uniaxial crystal’s normal section. From
this we deduce that the smectic layers grow parallel to
the air interface. The smectic thickness 4 (¢) is estimated
from the birefringence measured by the photomultiplier.
The growth velocity ¥ =0dh /3t can be approximately ad-
justed in the range V' ~5-50 um/s.
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For V > V,~25 um/s, we observe the onset of a con-
centric wave pattern corresponding to a birefringence
modulation of period A~20 um (Fig. 1). We can
suppress the waves by lowering the velocity or even in-
verting the growth direction (melting), i.e., this
phenomenon is reversible. The waves appearing during
the smectic growth do not drift. We interpret the onset
of this wave pattern as a growth instability. This instabil-
ity looks supercritical as the waves seem to appear with
an infinitesimal amplitude, but our present accuracy does
not allow us to demonstrate it quantitatively.

As the smectic liquid crystal grows, the wave pattern
builds a sequence of optically revealed nonlinearities (Fig.
1). First, the wave pattern transforms into a system of
equidistant bands with the same period, as if one “sign”
of the wave modulation was amplified and the other re-

FIG. 1. (a) The dynamical birefringence concentric waves
(w) and their nonlinearities: spindles (s) and islands (i). The
distance between the waves is ~20 um. The drop center is lo-
cated at the upper-right corner and the observation is made at
45° from the polarizers’ cross. The spindles show a {—,+}
birefringence polarity and the islands a strong opposite { +, —}
white-black birefringence polarity. (b) Schematic drawing of
the waves’ nonlinearities.
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duced. At the same time, as the instability amplitude in-
creases, a well-defined separation line appears along the
center of these bands. It corresponds to a steep
birefringence variation from one side of the line to the
other (see Fig. 2). With respect to the background
birefringence, the part of these bands closer to the drop
center (the “inner” part) shows a lack (—) of
birefringence and the opposite part (the ‘“outer” part)
shows a birefringence excess (+). Let us call this a
{ —,+} birefringence radial polarity. As the instability
goes on developing, these bands are subject to peristaltic
secondary modulations which build individual “spin-
dles.” The transformation of the bands into spindles
looks very similar to the Rayleigh instability of a liquid
cylinder which starts breaking into a system of separated
droplets. These spindles also show a well-defined { —, +}
polarity, always pointing toward the center of the drop as
for the “mother” bands.

Some spindles remain more or less steady in size, while
the other ones become even more nonlinear and give
birth to new circular structures. We observe two charac-
teristic behaviors. (i) Some small spindles become more
or less circular and drift slowly away from the droplet
center, before vanishing. They still show a faint { —, +}
radial polarity. (ii) Alternatively, the birefringence of the
outer part (+) of a large spindle increases violently and
transforms into a circular birefringent structure, drifting
now swiftly toward the center. It becomes a circular ““is-
land” showing a strong but opposite {+,—} polarity
(Fig. 1). Typically, close to the droplet center, these is-
lands of diameter ~5-20 um are black and white on a
gray background. It occurs that two islands meet; they
coalesce and build a bigger island. The big islands tend
to become perfectly circular and show a sharp outline.
As they arrive at the droplet center, they lose their
birefringence polarity. Such symmetric islands look very
much like the well-known disks corresponding to a quan-
tized number of smectic layers. Note that all these island

FIG. 2. Rows of focal conics (cf) nucleating along concentric
nonlinear waves (w) appearing as bipolar bands. The bands
show a strong { —,+} yellow-red (gray-black on the picture)
birefringence polarity. The drop center lies below the upper-left

corner.
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appear continuously from the growth of the wave pat-
tern, and not from a possible but not observed coales-
cence of independent Grandjean ‘‘batonnets” with the
smectic plate.

When the nonlinearities (bands, spindles, or islands)
are well developed, they suddenly give birth to focal-conic
defects, appearing as individual circular domains of ra-
dius ». The origin of these focal conics is already known
[3] and will be recalled later; we are interested here in
their nucleation mechanism. We observe nucleation of a
large number of focal conics. The nucleation follows a
very reproducible law, which depends on the type of non-
linearity involved: In the case of a { —, +} band or spin-
dle, the nucleation point is located in the outer part,
somewhere between the central separation and the outer
border [Figs. 2 and 3(b)]; in the case of a { —, +} island,
the nucleation point is located exactly on the outline of
the island, at the point which is the nearest to the center
of the smectic droplet [Fig. 3(b)]. Finally, the focal con-
ics nucleating on a large disklike island (at the drop
center) appear simultaneously all around its steep outline
(Fig. 4). When the disklike island is much larger than the
equilibrium size of the focal conics, the latter often gather
at the center of the island. As they nucleate, the focal
conics grow during a time ~ 100 ms, from a small size
under the resolution limit to an equilibrium size r, ~ 10
pm depending on the plate thickness 4. As described in
Ref. [3], the focal conics finally gather in a hexagonal ar-
ray floating freely inside the smectic plate, close to the
center of the drop. When 4 reaches the drop height H,,,
the array touches the glass holder and simply remains
steady.

Switching off the transmission light, we can measure
the profile H(R) of the drop free surface with the
Michelson objective (Fig. 5). At first, as the drop is in the
isotropic phase, we observe a system of large circular in-
terference fringes from which we can deduce the curva-
ture radius p of the droplet. Measuring the droplet pa-

FIG. 3. Nucleation of the focal conics (cf): (a) on the outline
of an island (i) toward the drop center; (b) between the center

and the outer part of a large { —, +} yellow-red (gray-black on
the picture) spindle (s). Photo (a) is a magnified view of the is-
land of Fig. 1 delayed ~ 20 ms.

FIG. 4. Nucleation of the focal conics (cfs) all around the
steep outline of symmetric disclike islands ().

rameters R, and H,, we have verified that p is
~(R}+H?2)/2H,, which means that the drop can be as-
similated to a portion of a sphere. During the growth, we
detect the birefringence waves by simply restoring the
transmission light. We find that the circular fringes of
the drop-air surface are not modified by the presence of a
nonlinear wave pattern, i.e., there is no free-surface image
associated to the waves, the bands, or the spindles. How-
ever, when a well-developed island appears, we observe
above it a free-surface bump of order 8H ~ + 1500 A (one
half fringe). Later on, when the focal conics appear, we
observe above each one a set of circular fringes corre-

FIG. 5. Michelson interferometer image of the drop free sur-
face showing the nucleation of focal conics (cfs) from a drifting
island (i). Only the drop free-surface profile is visible on this
picture, not the bulk birefringence. The focal conics are materi-
alized by their free-surface depressions (concave perturbations
to the central fringes). Although it is not clear on this micro-
graph, the island image is a free-surface bump (convex perturba-
tion to the central fringes). Here the thermal gradient is not ex-
actly vertical so that the equilibrium focal-conic network is
shifted from the drop center.
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sponding to a free-surface depression of a few microme-
ters. As a typical example, Fig. 5 is the free-surface im-
age of the birth of focal conics from an isolated island
drifting toward the droplet center.

IV. INTERPRETATION

Let us first recall why the free-floating focal conics are
stable [3]. Initially, the smectic layers growing parallel to
the air interface are also almost parallel to the isotropic
interface. This involves a smectic- A—isotropic surface
energy vy, significantly larger than y,=y ,—Ay corre-
sponding to the perpendicular orientation. The focal
conics are stable because they set the preferred perpen-
dicular orientation of the layers at the interface, with a
minimal bulk distortion energy (Fig. 6). The free-surface
depression associated to a focal conic is due to the com-
petition between the air-surface tension and the rigidity
of the layers which try to remain equidistant. Quantita-
tively, the excess free energy associated with a cylindrical
focal-conic domain of radius 7 inside the smectic plate of
thickness 4 is written 3]

8F(r,h)=aKr +BKh —Aymri+--- )

where the ellipsis represents higher-order terms. The first
two terms, corresponding to the focal-conic texture plus
the disclination line energy, are linear (a, dimension-
less). The third term, describing the surface-energy gain,
is quadratic and stabilizes the domain as soon as
r > (roh)!?, where ry~K /Ay. The last term describes
the saturation effects defining the equilibrium value r, (k)
of the grown focal conics. One such term is the excess
energy associated to the air free-surface depressions
above the focal conics. Typical values for 10CB are
K ~107% cgs for the splay elastic constant and Ay ~0.05
erg/cm? giving 7~ 2000 A. According to Ref. [3], the
focal conics are metastable as soon as » > r,. It is there-
fore enough to create a submicrometer focal conic to pass
the nucleation barrier.
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FIG. 6. Principles of the focal-conic static instability. With a
minimal bulk distortion energy ~ Kr + Kh, the focal conics re-
lax the smectic-A—isotropic surface energy anisotropy
~(7/”—yl)r2. The equilibrium radius r,(4) of the focal conics
is determined by the saturation due to the free-surface depres-
sion. This first-order textural instability is described in Ref. [3].

Before discussing the growth instability mechanism, let
us first examine the origin of the birefringence modula-
tion. We can deduce from the absence of free-surface im-
age associated with the waves, that the birefringence
modulation is due to an undulation of the smectic-
A—isotropic interface (the smectic layers remaining uni-
formly parallel), rather than a bulk undulation of the lay-
ers. Indeed, the air-surface tension would not be strong
enough to quench such an undulation, as shown by the
following arguments. Assume a bulk layer undulation of
wavelength a and amplitude aa. In an infinite medium,
it would relax on a length LS] H, ~a2/kp >>a, where
A,=(K /B)'"? is of order 30 A, B ~ 10" cgs being the lay-
er dilation modulus. Assume now that this layer undula-
tion is quenched on a length H,,. Let us compare the di-
lation energy per surface unit B(aa/H,,)*H,, with the
air-surface energy excess associated with an undulation of
the air free surface with an angle a, i.e., Ta?, I'~25 cgs
being the air-surface tension. Since I' /B is expected to be
also of order Ap (a molecular length), the ratio measuring
the relative “strength” of the free surface is ~H,, /H .
With a~10 um, we find H_,~3X10* um giving
H, /H_ ~3X1073, which justifies the proposition. The
origin of the islands’ free-surface bumps will be discussed
later.

From the preceding argument, the growth instability
appears very similar to a Mullins-Sekerka instability
[6,7]. In liquid crystals, this type of instability has been
studied at the nematic-isotropic interface [8], and at the
smectic- A —smectic-B interface [9]. When the growth ve-
locity is limited by the diffusion of impurities in the liquid
phase, the Mullins-Sekerka model predicts that the inter-
face is unstable above a velocity threshold

DG
mAc

V.~ ) (2)
where D ~5X107% cm?/s is a typical impurity diffusion
coefficient [8], G~1 mK/um is the thermal gradient,
m ~100 K is the “liquidus” slope, and Ac ~10~* the as-
sumed smectic- A —isotropic miscibility gap. With these
values we obtain ¥, ~ 50 um/s which is compatible with
our observations.

Our experimental accuracy is not high enough to in-
vestigate the appearing instability wavelength near the
threshold V.. In most experiments, V is typically a factor
of 2 above threshold. Therefore, taking V' ~2V,, the ap-
pearing wavelength must be compared with the fastest
growing wavelength

2 172 1/2
2Ty D ~dl21 3)
f (A )2._8-&— 2Vc C
¢ dc

whose expression is valid both in the subcritical regime
and the supercritical regime above threshold. [, written
in (3) as D/2V, and classically defined by mAc/G
(~D/V,) is the thermal length. d_ is the chemical
capillary length. Formula (3) differs from A, ~d {3137
giving the critical wavelength appearing at the threshold
V =V, [7], which was used to demonstrated experimen-
tally the supercritical behavior of growing nematics [8].
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In (3), ¢ ~ 1073 is the assumed fraction of impurities, u is
the chemical potential of the impurities, and
v, ~7.5X107% cm’ a typical molecular volume. As-
suming also y“~kT/:§2 (E~200 A is the smectic-
A—isotropic coherence length) and du/dc ~kT /c, we
obtain with ¥ ~2X25 um/s the previously given A,~30
um, which is compatible with our observations.

Let us now try to explain the optical contrast of the in-
terfacial distortions. Since the smectic layers do not un-
dulate, only the modulations 6% of the smectic plate
thickness can contribute to the birefringence modulation.
However, one must take into account the refraction at the
smectic- A —isotropic interface to describe the bipolar
birefringence of the bands, spindles, and islands. Let the
local interface normal be tilted with an angle ¢ with
respect to the vertical z axis, and 6 be the angle between
the molecules (normal to the smectic layers) and the z
axis (Fig. 7). The extraordinary beam is locally refracted
by an amount 8¢ which must satisfy
n; sing=n, sin(¢+8¢), where n; can be approximated by
n,+An sin’(0—8¢), An =n, —n, being the difference be-
tween the smectic extraordinary and ordinary indices,
and n;~n,~+An /3 the refractive index of the isotropic
phase. A good approximation of the refraction angle is
(An/n, <<1)

5~ ﬁ”(

1—sin%0) tang . 4

o

The birefringence modulation is defined as the compar-
ison between the path differences (between the extraordi-
nary and ordinary rays) across a wave or inside and out-
side a nonlinearity, ie., (h+8h)An sinX(0—35¢)
—hAn sin?6. It has two contributions; one is due to the

Air
(C] (C]
S
[
I ¢
@ (b)
FIG. 7. Refraction contribution to the integrated

birefringence induced by smectic hole (a) and smectic bulge (b)
nonlinearities. A birefringence polarity is induced since the an-
gle between the light rays and the normal to the layers is in-
creased on one side of a nonlinearity and reduced on the other
side. Referring first to the sign toward the drop center (on the
left), smectic holes show a { —,+} birefringence polarity and
smectic bulges the opposite { +, —} polarity. Close to the drop
center and for well-developed nonlinearities, this unusual con-
tribution to the birefringence dominates the usual thickness
variation contribution.

refraction effect (6¢) and the other one comes directly

from the thickness variation (84). The ratio between

them is x ~(h8¢)/(8h) tanf). Using Eq. (4) and assum-

ing 6 << 1, we obtain
L 4An b

3 n, af’

(5)

where a ~28h /tang is the size of the linear or nonlinear
object. x is independent of the modulation amplitude 84.
The values n,~1.5, An~0.2, 6~10° are typical of the
smectic and the observation point. Conversely, a and h
are characteristic of the interfacial object. For the waves
h is small (A ~ 10 um) and a is large (@ ~20 pum) which re-
sults in x ~0.5. For the waves the usual thickness effect
dominates. For the bands, which correspond to more
developed waves, up to the spindles and the islands, A is
larger (h ~50 um) and a smaller (¢ ~10 pum), then x is
~5 which means that the refraction effect dominates.
Reobserving carefully the transition from the waves to
the bands, one does see the 7 /2 phase shift of the optical
birefringence contrast toward the drop center, since the
thickness effect measures the amplitude modulation and
the refraction effect the slope modulation. From the ex-
perimental sign of the shift, we deduce that the bands are
localized smectic “holes.” Therefore the { —, +} polari-
ty reveals the top of smectic holes. This correspondence
simply results from the refraction effect (Fig. 7): 6 being
small, the smectic refractive indices are smaller than n;,
and the light rays diverge on a smectic ‘“bulge” or con-
verge on a smectic hole. At this point, we shall assume
that the interface is more or less horizontal since it is im-
posed by the thermal gradient. Then, as the layers grow
parallel to the drop surface, they are naturally tilted with
respect to the isotropic interface, and therefore the re-
fraction has the following effect: it increases the
birefringence on one side of the nonlinearity and reduces
it on the other side. The sign of this birefringence polari-
ty depends on whether the nonlinearities are bulges or
holes: a {—,+]} polarity reveals the top of a smectic
hole and the opposite { +, —} polarity the top of a smec-
tic bulge. This agrees with our previous observation on
the bands. The spindles coming continuously from the
bands must also be holes. Using this polarity law, we
deduce that the circular islands are smectic bulges. As-
suming a grown bulge with ¢ ~45°, i.e., 84 ~a /2, the am-
plitude  of the birefringence modulation  is
~24(An/n,)(8h6/a)h An ~1500 A with the values previ-
ously given. This corresponds indeed to the observed
modulation of the central islands (black and white on a
gray background).

We now come back to the origin of the free-surface
bumps. We have observed that above a well-developed
island, the smectic layers are bent. From the static mech-
anism which stabilizes the grown focal conics, we can ex-
pect this bend to come from a torque acting at the isotro-
pic interface (Fig. 8). Let us verify that the interfacial an-
isotropy can produce such an effect. We describe the
smectic- A—isotropic  surface energy by Y=y,
— Ay sin’(0—¢+a), 6—¢ being the layer-surface angle
and a the small bend angle. Assuming 6 —¢~45° for a
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FIG. 8. Bulge-induced smectic layers bending toward the
preferred perpendicular orientation at the isotropic interface.
This relaxation can explain the small free-surface bumps
(6H ~ +1500 A) associated to well-developed islands (cf. Fig.
5).

grown bulge, the energy gain associated to a bend angle a
is ~a’Aya. Since the free surface does not quench the
perturbation, this energy must be balanced with the cor-
responding free-surface energy excess ~a*I'a?. Compar-
ing these two terms, the bump 8H ~aa is expected to be
~a(Ay/T')~200 A, which order of magnitude agrees
with our observations. Note that the width of the bump
should be comparable with the width of the bulge:
Indeed a local perturbation of the smectic layers is
known to propagate normally to the layers, the deforma-
tion being located inside a narrow paraboloid [10] of
width Ax ~(2zA,)'/?. Witha ~10 um and A, ~30 A, we
obtain Ax ~0.2 um, indeed <<a. In the case of small
waves, as —¢ << 1, the energy gain ~a’Aya? becomes
quadratic and is always too small to create the layer
bending since Ay <<I'". This explains quantitatively the
absence of any image associated to the waves. As for the

(C)

FIG. 9. Fracture mechanism on a well-developed bulge.
When the bulge inclination ¢ is greater than the smectic layers’
tilt 6, the layers are notched by the isotropic interface. The lay-
er bending pattern induces then a pricking fracture which has
the very symmetry of a focal conic. The nucleation point
(notch) is located on the outline of the bulge toward the drop
center (left side).

FIG. 10. Pricking fracture on a well-developed hole. The
mechanism is the same as for a bulge (cf. Fig. 9) but the nu-
cleation point (notch) is located near the center of the hole,
more precisely between the hole center and the hole outer part
away from the drop center (right side).

spindles, they are probably not enough developed to in-
duce an elastic image.

Finally, from the effect of the layer bending on a hole
or a bulge at the isotropic interface, we can propose the
following fracture mechanism for the focal-conic nu-
cleation (Figs. 9 and 10). At a given point, the tilt 6 of
the smectic layers is fixed. When a hole or a bulge grows,
the local interface inclination ¢ increases. When ¢ is still
less than 6, the bending pattern does not change the
smectic plate’s symmetry. For ¢ > 6, a number of smectic
layers become notched by the isotropic interface. Close
to this notch, the layers bend now in opposite directions:
the bending pattern looks like a pricking fracture which
has the very symmetry of a focal conic. It is straightfor-
ward to see that the weak point of this fracture is located
on the outline of the bulges toward the drop center (Fig.
9), or in the middle of the holes (Fig. 10). Since we al-
ready know that spindles and nonlinear waves are holes
and that islands are bulges, our observations are coherent
with this fracture mechanism. Note that in the case of
the large disclike islands (cf. Fig. 4), the smectic layers
are probably notched all around their sharp outline.

V. DISCUSSION

It would be interesting to study in more detail the
growth instability itself, and to check, for instance, the
fracture threshold condition ¢>6. However, the
birefringence being a function of both the wave profile
and its spatial derivative, the resolution required for such
studies is rather high, ~1 um spatially and ~20 ms for
the time resolution (one video frame). This exceeds our
present capability. The standard geometry of Ref. [8]
seems better adapted; however, some additional
difficulties would probably arise from the interaction of
the smectic layers with the lateral bounding plates (ab-
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sent in our geometry).

From the symmetry of the smectic phase, whose layers
are tilted with respect to the interface, we would expect
the waves to drift radially. In a Mullins-Sekerka mecha-
nism, the drift velocity should be proportional to the im-
purity gradient inside the smectic and to the layer in-
clination a at the interface. We do not observe any
significant drift. This is probably difficult to observe as (i)
a is small, (ii) the observed 7 /2 phase shift in the wave
contrast gives an apparent A/4 drift toward the center,
and (iii) the rapid onset of the focal conics shortens the
available observation time. As for the drift of the islands
and circular spindles, it is probably rather difficult to
model. Indeed a dynamical mechanism should be non-
linear since the drift direction depends on whether the
nonlinearities are bulges or holes. We also cannot ex-
clude a possible static drift mechanism due to the bend-
ing pattern, which is asymmetric (see Fig. 8).

Finally, the propagation of the fracture itself is in-
teresting to study. In fact, in a lateral geometry we have
observed the onset of the central line of a focal conic,
from an interfacial perturbation. The dynamical study of
such a fracture, requiring a high-resolution temporal ex-
perimental setup, is beyond the scope of the present
work.
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VI. CONCLUSION

In this work, we have resolved the sequence of instabil-
ities occurring during the growth of a smectic- 4 plate in-
side the isotropic phase in a free drop geometry. Before
the focal-conic static instability already known [3], we
have observed an interfacial growth instability which
probably obeys a Mullins-Sekerka mechanism by
diffusion of impurities. We have focused our attention on
the nucleation of the ‘“‘static’” focal conics, occurring on
the nonlinearities of the growth instability. To explain
the nucleation process, we have proposed a fracture
mechanism. The larger dynamical distortions of the
smectic- A —-isotropic interface notch the smectic layers.
The cut smectic layers bend in opposite directions around
these notches, to relax the surface-energy anisotropy.
This bending pattern, which has the very symmetry of a
focal conic, is likely to induce a linear pricking fracture,
precursor of a focal conic. Our model is based on the ob-
served location of the focal-conic nucleation point, which
is different for the various types of nonlinearities. The
link between the two instabilities is now clear: The
dynamical instability helps the smectic texture to tunnel
through the potential barrier of the focal-conic static
first-order instability.

*Permanent address: Laboratoire de Dynamique et Struc-
ture des Matériaux Moléculaires. Université de Lille 1,
F-59655 Villeneuve d’Ascq, France.
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FIG. 1. (a) The dynamical birefringence concentric waves
(w) and their nonlinearities: spindles (s) and islands (i). The
distance between the waves is ~20 um. The drop center is lo-
cated at the upper-right corner and the observation is made at
45° from the polarizers’ cross. The spindles show a {—,+}
birefringence polarity and the islands a strong opposite |+, —}
white-black birefringence polarity. (b) Schematic drawing of
the waves’ nonlinearities.



FIG. 2. Rows of focal conics (cf) nucleating along concentric
nonlinear waves (w) appearing as bipolar bands. The bands
show a strong | —, +] yellow-red (gray-black on the picture)
birefringence polarity. The drop center lies below the upper-left
corner.



FIG. 3. Nucleation of the focal conics (cf): (a) on the outline

of an island (i) toward the drop center; (b) between the center
and the outer part of a large | —, +} yellow-red (gray-black on
the picture) spindle (s). Photo (a) is a magnified view of the is-
land of Fig. 1 delayed ~20 ms.



FIG. 4. Nucleation of the focal conics (cfs) all around the
steep outline of symmetric disclike islands (i).



FIG. 5. Michelson interferometer image of the drop free sur-
face showing the nucleation of focal conics (cfs) from a drifting
island (i). Only the drop free-surface profile is visible on this
picture, not the bulk birefringence. The focal conics are materi-
alized by their free-surface depressions (concave perturbations
to the central fringes). Although it is not clear on this micro-
graph, the island image is a free-surface bump (convex perturba-
tion to the central fringes). Here the thermal gradient is not ex-
actly vertical so that the equilibrium focal-conic network is
shifted from the drop center.



